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A CHARACTERIZATION OF FAST DECAYING

SOLUTIONS FOR QUASILINEAR AND WOLFF TYPE

SYSTEMS WITH SINGULAR COEFFICIENTS

JOHN VILLAVERT

Abstract. This paper examines the decay properties of positive solu-
tions for a family of fully nonlinear systems of integral equations con-
taining Wolf potentials and Hardy weights. This class of systems in-
cludes examples which are closely related to the Euler–Lagrange equa-
tions for several classical inequalities such as the Hardy–Sobolev and
Hardy–Littlewood–Sobolev inequalities. In particular, a complete char-
acterization of the fast decaying ground states in terms of their integra-
bility is provided in that bounded and fast decaying solutions are shown
to be equivalent to the integrable solutions. In generating this character-
ization, additional properties for the integrable solutions, such as their
boundedness and optimal integrability, are also established. Further-
more, analogous decay properties for systems of quasilinear equations of
the weighted Lane–Emden type are also obtained.

1. Introduction

In this paper, we examine the decay properties of positive solutions at
infinity for the following class of integral systems with variable coefficients
involving the Wolff potentials and Hardy weights,

(1.1)

{

u(x) = c1(x)Wβ,γ(|y|
σ1vq)(x),

v(x) = c2(x)Wβ,γ(|y|
σ2up)(x).

Here, the Wolff potential of a function f in L1
loc(R

n) is defined by

Wβ,γ(f)(x) =

∫ ∞

0

(

∫

Bt(x)
f(y) dy

tn−βγ

)
1

γ−1 dt

t
,

where n ≥ 3, γ > 1, β > 0 with βγ < n, and Bt(x) ⊂ R
n denotes the ball of

radius t centered at x. Additionally, we take p, q > 1, σi ≤ 0 and assume the
coefficients c1(x) and c2(x) are double bounded functions i.e. there exists a
positive constant C > 0 such that C−1 ≤ ci(x) ≤ C for all x ∈ R

n. The goal
of this paper is to determine the sufficient and necessary conditions that
completely describe the fast decaying ground states of system (1.1). One
motivation for studying the decay properties of solutions for these systems
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stems from the fact that it is an important ingredient in the classification of
solutions and in establishing Liouville type theorems. Another motivation
originates from the study of the asymptotic behavior of solutions for elliptic
equations. Namely, as we shall discuss below in greater detail, the integral
systems we consider are natural generalizations of many elliptic equations,
including the weighted equation

−∆u(x) = |x|σu(x)p, x ∈ R
n, σ > −2.

If p > n+σ
n−2 so that n− 2 > 2+σ

p−1 , the authors in [13, 19, 20] established that

ground states for this equation vanish at infinity with either the slow rate
or the fast rate, respectively:

u(x) ≃ |x|
− 2+σ

p−1 or u(x) ≃ |x|−(n−2).

Here, the notation f(x) ≃ g(x) means there exist positive constants c1 and
c2 such that

c1g(x) ≤ f(x) ≤ c2g(x) as |x| −→ ∞.

Hence, in a sense, our results extend this example considerably since the
Wolff potential has applications to many nonlinear problems and system
(1.1) includes several well-known cases. For instance, if β = α/2 and γ =
2, the Wolff potential Wβ,γ(·) becomes the Riesz potential Iα(·) modulo a
constant since

Wα
2
,2(f)(x) =

∫ ∞

0

∫

Bt(x)
f(y) dy

tn−α

dt

t
=

∫

Rn

f(y)
(

∫ ∞

|x−y|
tα−n dt

t

)

dy

=
1

(n− α)

∫

Rn

f(y) dy

|x− y|n−α

.
= C(n, α)Iα(f)(x).

Therefore, we can recover from (1.1) the weighted version of the Hardy–
Littlewood–Sobolev (HLS) system of integral equations:

(1.2)















u(x) =

∫

Rn

|y|σ1v(y)q

|x− y|n−α
dy,

v(x) =

∫

Rn

|y|σ2u(y)p

|x− y|n−α
dy.

If σi = 0 with the critical condition

1

1 + q
+

1

1 + p
=

n− α

n
,

system (1.2) comprises of the Euler–Lagrange equations for a functional as-
sociated with the sharp Hardy–Littlewood–Sobolev inequality. In the special
case where p = q = n+α

n−α , Lieb classified all the maximizers for this func-
tional, thereby obtaining the best constant in the HLS inequality. He then
posed the classification of all the critical points of the functional, or the
solutions of the HLS system, as an open problem [23]. This conjecture on
the classification of solutions was later addressed by Chen, Li and Ou [5] by
introducing a version of the method of moving planes for integral equations
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(see also [21] for an alternative proof via the method of moving spheres). If
σi = σ, p = q and u ≡ v, system (1.2) reduces to the single integral equation

u(x) =

∫

Rn

|y|σu(y)p

|x− y|n−α
dy,

which is the Euler–Lagrange equation for the classical Hardy–Sobolev in-
equality when α = 2 and p = n+2+2σ

n−2 . We refer the reader to [13, 26] for
further discussions and results on the asymptotic, symmetry, and regularity
properties of solutions for this integral equation.

Interestingly, the Wolff type integral equations are also closely related to
some well-known systems of differential equations. For example, if α = 2k is
an even integer, system (1.2) is equivalent, under the appropriate conditions
(see [4, 38]), to the poly-harmonic system

(1.3)

{

(−∆)ku(x) = |x|σ1v(x)q, x ∈ R
n\{0},

(−∆)kv(x) = |x|σ2u(x)p, x ∈ R
n\{0}.

Recently, the study on the criteria governing the existence and non-existence
of solutions for both differential and integral versions of the HLS type sys-
tems has received much attention, especially since Liouville type theorems
are crucial in deriving a priori estimates and singularity and regularity prop-
erties of solutions for a class of nonlinear elliptic problems [9, 32]. More pre-
cisely, it is conjectured that either system (1.2) or (1.3) admits no positive
solution in the subcritical case n+σ1

1+q + n+σ2
1+p > n−α (see [2, 8, 25, 28, 30, 37]

for partial results). In the case where α = 2 and σi = 0, this is often re-
ferred to as the Lane–Emden conjecture and it too has only partial results.
Namely, the result holds true for radial solutions (see [28]) and for dimension
n ≤ 4 (see [32, 33, 34]). On the other hand, the scalar analogue of this con-
jecture is classical and has a complete solution (see [1, 3, 22]). Conversely,
we refer the reader to [38] (see also [7, 18]) for existence results to system
(1.3) in the non-subcritical case

n+ σ1
1 + q

+
n+ σ2
1 + p

≤ n− 2k.

The Wolff type integral systems are also closely related to many other no-
table differential equations. For instance, if β = 1, the equation

u(x) = W1,γ(|y|
σuq)(x)

corresponds to the γ-Laplace equation

−div(|∇u|γ−2∇u) = |x|σu(x)q.

More generally, if β = 2k
k+1 and γ = k + 1, then the integral equation

u(x) = W 2k
k+1

,k+1(|y|
σuq)(x)

corresponds to the k-Hessian equation

Fk[−u] = |x|σu(x)q, for k = 1, 2, . . . , n,
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where

Fk[u] = Sk(λ(D
2u)), λ(D2u) = (λ1, λ2, . . . , λn),

and the λi’s are the eigenvalues of the Hessian matrix D2u and Sk(·) is the
kth symmetric function

Sk(λ) =
∑

1≤ii<...<ik≤n

λi1λi2 · · ·λik .

Notice that when k = 1 and k = n, we recover the familiar second-order
elliptic operators:

F1[u] = ∆u and Fn[u] = det(D2u).

Let us also discuss previous works concerning integral systems involving
the Wolff potentials. In particular, the qualitative properties of solutions
for the unweighted version of system (1.1) and its special cases have been
studied by a number of authors. For instance, the authors in [27] studied
the integrability and regularity of solutions, and the authors in [14]-[17] and
[35] examined the asymptotic and symmetry properties of solutions. Similar
qualitative results were obtained in [6] for a more specific weighted integral
system of Wolff type under different and often times stronger assumptions
compared to those in this paper. For more on the properties of the Wolff
potentials and other related problems, we refer the reader to [11, 12, 29, 31].

2. Some preliminaries and the main results

Throughout this paper we shall further assume that γ ∈ (1, 2] and σi ∈
(−βγ, 0]. We shall also take the coefficients c1(x) and c2(x) of (1.1) to be
double bounded. In characterizing the fast decaying ground states for the
integral systems, we shall consider the integrable solutions. Namely, we
say a positive solution (u, v) of system (1.1) is an integrable solution if
(u, v) ∈ Lr0(Rn)× Ls0(Rn) with r0 =

n
q0

and s0 =
n
p0

where

q0
.
=

βγ(γ − 1 + q) + (γ − 1)σ1 + σ2q

pq − (γ − 1)2
and

p0
.
=

βγ(γ − 1 + p) + (γ − 1)σ2 + σ1p

pq − (γ − 1)2
.

In view of the Lane–Emden and HLS conjectures and the related non-
existence results cited above, we always assume hereafter the non-subcritical
condition

q0 + p0 ≤
n− βγ

γ − 1
,

or equivalently

(2.1)
n+ σ1

γ − 1 + q
+

n+ σ2
γ − 1 + p

≤
n− βγ

γ − 1
.

Then, our main result states that integrable solutions are exactly those
ground states which decay with the fast rates.
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Theorem 1. Let q ≥ p and σ1 ≤ σ2 ≤ 0 and let u, v be a positive solution of
the integral system (1.1) satisfying (2.1). Then u, v are integrable solutions
if and only if u, v are bounded and decay with the fast rates as |x| −→ ∞:

u(x) ≃ |x|
−n−βγ

γ−1

and


















v(x) ≃ |x|−
n−βγ
γ−1 , if p(n−βγ

γ−1 )− σ2 > n;

v(x) ≃ |x|
−n−βγ

γ−1 (ln |x|)
1

γ−1 , if p(n−βγ
γ−1 )− σ2 = n;

v(x) ≃ |x|
−

p(
n−βγ
γ−1 )−(βγ+σ2)

γ−1 , if p(n−βγ
γ−1 )− σ2 < n.

This theorem essentially contains the decay properties of solutions for the
weighted HLS type integral system, which can also be found in [36].

Corollary 1. Let q ≥ p, σ1 ≤ σ2 and let u, v be a positive solution of system
(1.2) satisfying the non-subcritical condition

n+ σ1
1 + q

+
n+ σ2
1 + p

≤ n− α.

Then u, v are integrable solutions if and only if u, v are bounded and decay
with the fast rates as |x| −→ ∞:

u(x) ≃ |x|−(n−α)

and






v(x) ≃ |x|−(n−α), if p(n− α)− σ2 > n;

v(x) ≃ |x|−(n−α) ln |x|, if p(n− α)− σ2 = n;

v(x) ≃ |x|−(p(n−α)−(α+σ2)), if p(n− α)− σ2 < n.

Remark 1. The assumptions q ≥ p and σ1 ≤ σ2 are due to the inhomogene-
ity of the systems when q 6= p and σ1 6= σ2 and this illustrates a difficulty
we encounter, which does not arise in the scalar case, when examining the
systems. However, these assumptions are not so essential in the following
sense. Indeed, we can interchange these parameters and the results of The-
orem 1 remain valid provided we interchange the parameters along with u
and v accordingly in the statement of the theorem.

Remark 2. Consider the unweighted case where σi = 0.

(i) In [27] and [35], the authors considered instead the “finite-energy”
solutions i.e. (u, v) ∈ Lp+γ−1(Rn) × Lq+γ−1(Rn) for the unweighted
system (1.1) under the critical case

1

γ − 1 + q
+

1

γ − 1 + p
=

n− βγ

n(γ − 1)
.

From Theorem 1 in [27], we may deduce that finite-energy solutions
are integrable solutions. Conversely, in the next section we show that
integrable solutions are indeed finite-energy solutions even under the
weaker condition (2.1).
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(ii) In the critical case, the particular rate for v(x),

p(n−βγ
γ−1 )− (βγ + σ2)

γ − 1
,

is equal to n
γ−1

γ−1+p
γ−1+q and so our main theorem coincides with the

asymptotic results of [35] for the unweighted system.

If σi 6= 0, system (1.2) differs from the well-known doubly weighted HLS
system in terms of the asymptotic properties of their solutions. Namely,
the fast decay rates of solutions for (1.2), as indicated by Corollary 1, are
different from the doubly weighted HLS system (cf. [17]).

As a consequence of Theorem 1, we can also establish a corresponding
result for quasilinear systems. Consider the system

(2.2)

{

−divA(x,∇u) = c1(x)|x|
σ1v(x)q,

−divA(x,∇v) = c2(x)|x|
σ2u(x)p,

where c1(x) and c2(x) are double bounded and the map A : Rn × R
n 7→ R

n

satisfies the following properties. The mapping x 7→ A(x, ξ) is measurable
for all ξ ∈ R

n; the mapping ξ 7→ A(x, ξ) is continuous for a.e. x ∈ R
n; for

some positive constants k1 ≤ k2 there hold for all ξ ∈ R
n and a.e. x ∈ R

n,

(a) A(x, ξ) · ξ ≥ k1|ξ|
γ ,

(b) |A(x, ξ)| ≤ k2|ξ|
γ−1,

(c) (A(x, ξ)−A(x, ξ′)) · (ξ − ξ′) > 0 whenever ξ 6= ξ′,
(d) A(x, λξ) = λ|λ|γ−2A(x, ξ) for all λ 6= 0.

Remark 3. In the simple case whereA(x, ξ)
.
= |ξ|γ−2ξ, divA(x,∇u) becomes

the usual γ-Laplace operator div(|∇u|γ−2∇u). Moreover, positive solutions

of (2.2) are to be understood in the usual weak sense i.e. u, v ∈ W 1,γ
loc (R

n)∩
C(Rn) satisfying the system in the distribution sense.

Corollary 2. Let (u, v) be a positive solution of system (2.2) satisfying the
associated non-subcritical condition. Then u, v are integrable solutions if
and only if u, v are bounded and decay with the fast rates as |x| −→ ∞:

u(x) ≃ |x|−
n−γ
γ−1

and


















v(x) ≃ |x|
−n−γ

γ−1 , if p(n−γ
γ−1 )− σ2 > n;

v(x) ≃ |x|−
n−γ
γ−1 (ln |x|)

1
γ−1 , if p(n−γ

γ−1 )− σ2 = n;

v(x) ≃ |x|
−

p(
n−γ
γ−1 )−(γ+σ2)

γ−1 , if p(n−γ
γ−1 )− σ2 < n.

Let us now recall several basic estimates for both the Riesz and Wolff
potentials which we often invoke throughout this paper (see [10, 27]).

Lemma 1. Let p, q > 1.
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(1) (weighted HLS type inequality) Let α ∈ (0, n), and σ ∈ (−α, 0]. Then
there exists some positive constant C = C(n, p, α, σ) such that

‖Iα(|y|
σf)‖q ≤ C‖f‖p for all f ∈ Lp(Rn),

where 1
p −

1
q = α+σ

n and q > n
n−α .

(2) Let β > 0 , γ > 1, and βγ < n. Then there exists some positive constant
C such that

‖Wβ,γ(f)‖q ≤ C‖f‖
1

γ−1
p for all f ∈ Lp(Rn),

where 1
p −

γ−1
q = βγ

n and q > γ − 1.

Moreover, we have a comparison principle between the Lp norms of the
Riesz and Wolff potentials (see Proposition 5.1 in [31]).

Lemma 2 (Wolff’s inequality). Let p > 1, β > 0, γ > 1 and βγ < n. Then
there exist positive constants C1 and C2 such that

C1‖Wβ,γ(f)‖p ≤ ‖Iβγ(f)‖
1

γ−1
p

γ−1
≤ C2‖Wβ,γ(f)‖p,

The remaining parts of this paper are organized in the following way. In
Section 3, we establish several important qualitative properties of integrable
solutions which are essential in our proof of Theorem 1, including an optimal
integrability result. In the same section, a boundedness property is given
in Theorem 3 which is another key ingredient in establishing the fast decay
rates of integrable solutions. However, we delay its proof until Section 6 in
order to better illustrate the main ideas in the proof of Theorem 1. Then,
Section 4 and Section 5 contains the proof of Theorem 1 and Corollary 2,
respectively. Moreover, we should mention that some of our methods below
are inspired by those from [15] and [35].

3. Properties of integrable solutions

First, we establish an optimal integrability result for integrable solutions
and show that they are indeed ground states.

Theorem 2. Suppose q ≥ p and σ1 ≤ σ2. If u, v are positive integrable
solutions of (1.1), then (u, v) ∈ Lr(Rn)× Ls(Rn) where
(3.1)
n(γ − 1)

n− βγ
< r ≤ ∞ and max

{n(γ − 1)

n− βγ
,

n(γ − 1)

p(n−βγ
γ−1 )− (βγ + σ2)

}

< s ≤ ∞.

Furthermore, u, v −→ 0 as |x| −→ ∞.

Remark 4. The intervals in (3.1) are indeed optimal. Namely, there hold
‖u‖r = ‖v‖s = ∞ at the endpoints

r =
n(γ − 1)

n− βγ
and s = max

{n(γ − 1)

n− βγ
,

n(γ − 1)

p(n−βγ
γ−1 )− (βγ + σ1)

}

.
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To see this, notice that

u(x) ≥ c

∫ 2|x|

|x|

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t
≥ c

∫ 2|x|

|x|
t
−n−βγ

γ−1
dt

t
≥ c|x|

−n−βγ
γ−1

and similarly

v(x) ≥ c|x|−
n−βγ
γ−1 .

Therefore, the first estimate implies that for u to belong to Lr(Rn), then

(n−βγ)(γ− 1)−1r > n or r > n(γ−1)
n−βγ . The lower bound of v(x) implies that

u(x) ≥ c

∫ |x|

0

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t

≥ c

∫ |x|

0

(

∫

Bt(x)
|y|−q n−βγ

γ−1
+σ1 dy

tn−βγ

)
1

γ−1 dt

t

≥ c|x|
− q(n−βγ)

(γ−1)2
+

βγ+σ1
γ−1 .

Then, if u belongs to Lr(Rn), then it necessarily holds that

r >
n(γ − 1)

q(n−βγ
γ−1 )− (βγ + σ1)

.

Thus, in view of q ≥ p and σ1 ≤ σ2, the necessary condition for u to belong
to Lr(Rn) is

r > max
{n(γ − 1)

n− βγ
,

n(γ − 1)

q(n−βγ
γ−1 )− (βγ + σ1)

}

=
n(γ − 1)

n− βγ
.

Likewise, we can show the necessary condition for v to belong to Ls(Rn) is

s > max
{n(γ − 1)

n− βγ
,

n(γ − 1)

p(n−βγ
γ−1 )− (βγ + σ2)

}

.

Proof of Theorem 2. Due to the double bounded property, we may assume
without loss of generality, that c1(x), c2(x) ≡ 1. Set a = 1/r0, b = 1/s0 and
let

I
.
= (a− b,

n− βγ

n(γ − 1)
)× (0,

n− βγ

n(γ − 1)
− a+ b).

Note that a− b ≥ 0 since q ≥ p and σ1 ≤ σ2 ≤ 0.

Step 1: We first establish the integrability of solutions in the smaller interval
I, then we extend to the larger interval as stated in the theorem. Choose
any pair of positive real numbers r and s such that (1/r, 1/s) ∈ I and

(3.2)
1

r
−

1

s
=

1

r0
−

1

s0
= a− b.

It follows that

1

r
−

2− γ

r0
+

βγ + σ1
n

=
q − 1

s0
+

1

s
and

1

s
−

2− γ

s0
+

βγ + σ2
n

=
p− 1

r0
+

1

r
.
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For a fixed real number A > 0 and some given function w(x), we associate
to it the function wA(x) defined

wA(x) =

{

w(x) if w(x) > A or |x| > A,
0 otherwise.

Define the integral operator T (f, g) = (T1g, T2f) where

T1g(x) =

∫ ∞

0

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
2−γ
γ−1

(

∫

Bt(x)
|y|σ1vA(y)

q−1g(y) dy

tn−βγ

) dt

t
,

and

T2f(x) =

∫ ∞

0

(

∫

Bt(x)
|y|σ2u(y)p dy

tn−βγ

)
2−γ
γ−1

(

∫

Bt(x)
|y|σ2uA(y)

p−1f(y) dy

tn−βγ

) dt

t
.

Moreover, let

F =

∫ ∞

0

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
2−γ
γ−1

(

∫

Bt(x)
|y|σ1(v(y) − vA(y))

q dy

tn−βγ

) dt

t
,

and

G =

∫ ∞

0

(

∫

Bt(x)
|y|σ2u(y)p dy

tn−βγ

)
2−γ
γ−1

(

∫

Bt(x)
|y|σ2(u(y)− uA(y))

p dy

tn−βγ

) dt

t
.

Clearly, a positive solution u, v of system (1.1) satisfies

(3.3) (u, v) = T (u, v) + (F,G).

By Hölder’s inequality,

|T1g(x)| ≤ u(x)2−γ

{

∫ ∞

0

(

∫

Bt(x)
|y|σ1vA(y)

q−1g(y) dy

tn−βγ

)
1

γ−1 dt

t

}γ−1

.
= u(x)2−γ

{

T 0
1 g(x)

}γ−1
.

Therefore,

‖T1g‖r ≤ ‖u‖2−γ
r0 ‖T 0

1 g‖
γ−1
r ,

where 1
r = 2−γ

r0
+ γ−1

r . Then, by applying the Wolff’s inequality of Lemma
2 followed by the weighted HLS inequality, we get

‖T 0
1 g‖

γ−1
r ≤ ‖Wβ,γ(|y|

σ1vq−1
A g)‖γ−1

r ≤ C‖Iβγ(|y|
σ1vq−1

A g)‖ r
γ−1

≤ C‖vq−1
A g‖ nr

n(γ−1)+r(βγ+σ1)
.

Noticing that

n(γ − 1) + r(βγ + σ1)

nr
=

γ − 1

r
+

βγ + σ1
n

=
1

r
−

2− γ

r0
+

βγ + σ1
n

,

Hölder’s inequality implies

‖vq−1
A g‖ nr

n(γ−1)+r(βγ+σ1)
≤ ‖vA‖

q−1
s0 ‖g‖s,
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and therefore,

(3.4) ‖T1g‖r ≤ C1‖u‖
2−γ
r0 ‖vA‖

q−1
s0 ‖g‖s.

Likewise, there holds

‖T2f‖s ≤ ‖v‖2−γ
s0 ‖T 0

2 f‖
γ−1
s ,

where 1
s = 2−γ

s0
+ γ−1

s and

T 0
2 f(x)

.
=

∫ ∞

0

(

∫

Bt(x)
|y|σ2uA(y)

p−1f(y) dy

tn−βγ

)
1

γ−1 dt

t
.

As before, by applying the Wolff type inequality, the weighted HLS inequal-
ity and Hölder’s inequality, we arrive at the estimate

(3.5) ‖T2f‖s ≤ C2‖v‖
2−γ
s0 ‖uA‖

p−1
r0 ‖f‖r.

Obviously, we can choose A sufficiently large so that

C1‖u‖
2−γ
r0 ‖vA‖

q−1
s0 , C2‖v‖

2−γ
s0 ‖uA‖

p−1
r0 ≤ 1/2.

Hence, (3.4) and (3.5) imply that the operator T (f, g) equipped with the
norm

‖(f1, f2)‖Lr(Rn)×Ls(Rn)
.
= ‖f1‖r + ‖f2‖s,

is a contraction map from Lr(Rn) × Ls(Rn) to itself. Moreover, it is clear
from the definition that (F,G) belongs to Lr(Rn) × Ls(Rn). Thus, since
(u, v) satisfies (3.3), applying the regularity lifting result of Lemma 2.2 in
[27] implies that (u, v) ∈ Lr(Rn)× Ls(Rn) for all (1/r, 1/s) ∈ I.

Step 2: We extend the interval I. From the first integral equation and
Lemmas 1 and 2, we have

‖u‖r ≤ C‖Wβ,γ(|y|
σ1vq)‖r ≤ C‖vq‖

1
γ−1

nr
n(γ−1)+r(βγ+σ1)

≤ C‖v‖
q

γ−1
nrq

n(γ−1)+r(βγ+σ1)
.

Since v ∈ Ls(Rn) for all 1
s ∈ (0, n−βγ

n(γ−1) −a+b), the previous estimate implies

that u ∈ Lr(Rn) for all 1
r ∈ (0, q

γ−1{
n−βγ
n(γ−1) − a+ b}− βγ+σ1

n(γ−1)). From the fact

that p0, q0 <
n−βγ
n(γ−1) , we can easily show that

(3.6)
q

γ − 1

{ n− βγ

n(γ − 1)
− a+ b

}

−
βγ + σ1
n(γ − 1)

> a− b,

and thus u ∈ Lr(Rn) for all 1
r ∈ (0, n−βγ

n(γ−1)).

Likewise, we can apply the same arguments on the second integral equa-
tion to show that

‖v‖s ≤ C‖u‖
p

γ−1
nsp

n(γ−1)+s(βγ+σ2)
.

Hence, since u ∈ Lr(Rn) for all 1
r ∈ (0, n−βγ

n(γ−1)), we get that v ∈ Ls(Rn) for

all

1

s
∈
(

0,min
{ n− βγ

n(γ − 1)
,
p(n−βγ

γ−1 )− (βγ + σ2)

n(γ − 1)

})

.
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Step 3: It remains to show that u, v are ground states i.e. u, v ∈ L∞(Rn)
and u, v −→ 0 as |x| −→ ∞.

We only show u(x) is bounded and vanish at infinity, since the result for
v(x) follows similarly. For small δ ∈ (0, 1),

u(x) ≤ C
(

∫ δ

0
+

∫ ∞

δ

)(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t

.
= C(I1 + I2).

We shall estimate I1 and I2. First, we choose a suitably large ℓ > 1 with
n+ σ1ℓ

ℓ−1 > 0 so that Hölder’s inequality and Theorem 2 imply
∫

Bt(x)
|y|σ1v(y)q dy ≤ C‖vq‖ℓ

(

∫

Bt(x)
|y|

σ1ℓ
ℓ−1 dy

)1−1/ℓ
(3.7)

≤ Ctn(1−1/ℓ)+σ1‖v‖qℓq.

In the last inequality, we used estimates (3.8) and (3.9) from below. Let
t ≤ |x|/2. If y ∈ Bt(x), then |x|/2 ≤ |y| and thus |x− y| ≤ |y|. Therefore,

(3.8)

∫

Bt(x)
|y|

σ1ℓ
ℓ−1 dy ≤

∫

Bt(x)
|x− y|

σ1ℓ
ℓ−1 dy ≤ Ctn+

σ1ℓ
ℓ−1 .

On the other hand, let t > |x|/2. If y ∈ Bt(x), then y ∈ Bt+|x|(0) and

(3.9)

∫

Bt(x)
|y|

σ1ℓ
ℓ−1 dy ≤

∫

Bt+|x|(0)
|y|

σ1ℓ
ℓ−1 dy ≤

∫ |x|+t

0
sn+

σ1ℓ
ℓ−1

ds

s
≤ Ctn+

σ1ℓ
ℓ−1 .

Choosing ℓ large enough so that we also have βγ + σ1 − n/ℓ > 0, estimate
(3.7) implies

I1 ≤ C1

∫ δ

0

(tn(1−1/ℓ)+σ1

tn−βγ

)
1

γ−1 dt

t
≤ C1

∫ δ

0
t
βγ+σ1−n/ℓ

γ−1
dt

t
< ∞.

Choose a small c ∈ (0, 1). If z ∈ Bc(x), then Bt(x) ⊂ Bt+c(z). Thus, for
z ∈ Bc(x),

I2 ≤ C2

∫ ∞

δ

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t

≤ C2

∫ ∞

δ

(

∫

Bt+c(z)
|y|σ1v(y)q dy

(t+ c)n−βγ

)
1

γ−1
(t+ c

t

)
n−βγ
γ−1

+1 d(t+ c)

t+ c

≤ C2

(

1 +
c

t

)
n−βγ
γ−1

+1
∫ ∞

δ+c

(

∫

Bt(z)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t

≤ C2u(z).

Hence, combining our estimates for I1 and I2 give us u(x) ≤ C1+C2u(z) for
all z ∈ Bc(x). Integrating this inequality on the ball Bc(x) then applying
Hölder’s inequality yields

u(x) ≤ C1 +
C2

|Bc(x)|

∫

Bc(x)
u(z) dz ≤ C1 + C2|Bc(x)|

−1/r0‖u‖r0 ≤ C.
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Hence, u ∈ L∞(Rn).
For each ǫ > 0, we can find a small δ > 0 such that

∫ δ

0

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t
≤ C‖v‖

q
γ−1
∞

∫ δ

0
t
βγ+σ1
γ−1

dt

t
< ǫ.

Using similar arguments we used in estimating I2, we calculate

∫ ∞

δ

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t
≤ Cu(z) for all z ∈ Bδ(x).

Hence, u(x) ≤ ǫ+ Cu(z) for z ∈ Bδ(x), which implies

u(x)r0 ≤ C1ǫ
r0 + C2u(z)

r0 .

Integrating this inequality over the ball Bδ(x) implies

(3.10) u(x)r0 ≤ C1ǫ
r0 +

C2

|Bδ(x)|

∫

Bδ(x)
u(z)r0 dz.

Since u ∈ Lr0(Rn),

1

|Bδ(x)|

∫

Bδ(x)
u(z)r0 dz −→ 0 as |x| −→ ∞,

and thus the right-hand side of (3.10) tends to zero as |x| −→ ∞ and
ǫ −→ 0. Hence, u(x) −→ 0 as |x| −→ ∞. This completes the proof of the
theorem. �

Corollary 3. There holds
∫

Rn

|y|σ1v(y)q dy < ∞.

Proof. There are two cases to consider.
(i) First, assume n − βγ ≤ p(n−βγ

γ−1 ) − (βγ + σ2). Indeed, since q ≥ p

and σ1 ≤ σ2 in (−βγ, 0], the non-subcritical condition (2.1) implies q ≥
(γ−1)(n+βγ+2σ1)

n−βγ . Now choose an appropriate ε > 0 so that ε ∈ (βγ+2σ1, βγ+

σ1) and let ℓ = n+ε
n+βγ+2σ1

and ℓ′ = n+ε
ε−2σ1−βγ . Therefore, 1

ℓ + 1
ℓ′ = 1 with

ℓq > n(γ−1)
n−βγ and ℓ′ > n

−σ1
. Thus, Hölder’s inequality and Theorem 2 imply

∫

B1(0)C
|y|σ1v(y)q dy ≤

(

∫

B1(0)C
|y|σ1

ℓ
ℓ−1 dy

)
ℓ−1
ℓ
(

∫

B1(0)C
v(y)ℓq dy

)1/ℓ

≤ C
(

∫ ∞

R
tn+σ1ℓ′ dt

t

)
1
ℓ′
(

∫

B1(0)C
v(y)ℓq dy

)1/ℓ

≤ C‖v‖qℓq < ∞.

(ii) Now assume n − βγ > p(n−βγ
γ−1 ) − (βγ + σ2). For some ε ∈ (0,−σ1),

set ℓ = n
n+σ1+ε and ℓ′ = n

−σ1−ǫ so that 1
ℓ +

1
ℓ′ = 1. Indeed, pq > (γ− 1)2 and
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the non-subcritical condition (2.1) imply

(n+ σ1)(γ − 1) + q(n+ σ2)

q(γ − 1 + p)
=

(n+ σ1)(γ − 1)

q(γ − 1 + p)
+

n+ σ2
γ − 1 + p

<
n+ σ1

γ − 1 + q
+

n+ σ2
γ − 1 + p

≤
n− βγ

γ − 1
.

It follows that

(n+σ1)(γ− 1)
1

q
<

(n− βγ)(γ − 1 + p)

γ − 1
− (n+σ2) = p(

n− βγ

γ − 1
)− (βγ+σ2)

and thus n+σ1
n

1
q <

p(n−βγ
γ−1

)−(βγ+σ2)

n(γ−1) . Then for ε sufficiently small,

lq >
n(γ − 1)

p(n−βγ
γ−1 )− (βγ + σ2)

= max

{

n(γ − 1)

n− βγ
,

n(γ − 1)

p(n−βγ
γ−1 )− (βγ + σ2)

}

.

Hence, Hölder’s inequality and Theorem 2 imply
∫

B1(0)C
|y|σ1v(y)q dy ≤ C‖v‖qlq < ∞.

Moreover,
∫

B1(0)
|y|σ1v(y)q dy ≤ C‖v‖q∞ < ∞ since σ1 ∈ (−n, 0]. Hence,

these calculations imply that |y|σ1vq ∈ L1(Rn). �

Remark 5. Of course if σi = 0, the preceding corollary states that v be-
longs to Lq(Rn). Thus, since γ − 1 + q > q and the non-subcritical condi-
tion implies that γ − 1 + p > n(γ − 1)(n − βγ)−1, we see from Corollary
3 and Theorem 2 that u, v are also finite-energy solutions i.e. (u, v) ∈
Lp+γ−1(Rn)× Lq+γ−1(Rn).

The next result is a key step in establishing the fast decay rates of in-
tegrable solutions. Although we state the theorem here, we delay its proof
until the final section in order to better illustrate the main ideas in our
proof of Theorem 1. We remark that our need for this key result is due to
the variable coefficients in the integral system. In contrast, for the constant
coefficient case and with the help of the method of moving planes in integral
form, the integrable solutions are indeed radially symmetric and the argu-
ments for establishing the decay estimates become far simpler. However, for
variable coefficients, the solutions may no longer have any radial symmetry.

Here ϕ ∈ C∞
0 (B1(0)\B1/2(0)) is a cut-off function where 0 ≤ ϕ(x) ≤ 1

for 1/2 ≤ |x| ≤ 1 and ϕ(x) = 1 for 5/8 ≤ |x| ≤ 7/8. Then there holds the
following.

Theorem 3. Let (u, v) be a positive integrable solution of the integral system
(1.1) and set ϕr(x)

.
= ϕ(xr ) for any r > 0 and

g(x) = v(x)|x|
n+σ1

q ϕr(x).

Then there exists a positive constant C independent of r such that

(3.11) g(x) ≤ C for all x.
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4. Fast decay rates of positive solutions

Throughout this section, u, v are understood to be positive integrable
solutions of system (1.1) unless further specified.

4.1. Fast decay rate for u(x).

Proposition 1. For suitably large |x|, there exists a positive constant c such
that

u(x), v(x) ≥ c|x|−
n−βγ
γ−1 .

Proof. For large |x|, it is clear that

u(x) ≥ c

∫ ∞

1+|x|

(

∫

B1(0)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t

≥ c

∫ ∞

1+|x|
t
βγ−n
γ−1

dt

t
≥ c|x|

−n−βγ
γ−1 .

The lower bound for v(x) follows similarly and this completes the proof. �

Proposition 2. There holds u(x) ≃ |x|−
n−βγ
γ−1 .

Proof. In view of Proposition 1, it only remains to show that there exists a
positive constant C such that

(4.1) u(x) ≤ C|x|
−n−βγ

γ−1 for suitably large |x|.

We consider two cases: (i) Let t ≤ |x|/2. Then y ∈ Bt(x) implies that
|x|/2 ≤ |y| ≤ 3|x|/2, and by virtue of Theorem 3,

|y|σ1v(y)q ≤ C|y|σ1(|y|
−

n+σ1
q )q ≤ C|y|−n ≤ C|x|−n.

Hence, there holds

∫ |x|/2

0

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t
≤ C|x|

− n
γ−1

∫ |x|/2

0
t

βγ
γ−1

dt

t
≤ C|x|

−n−βγ
γ−1 .

(ii) Suppose t > |x|/2. According to Corollary 3, |x|σ1v(x)q ∈ L1(Rn), so

∫ ∞

|x|/2

(

∫

Bt(x)
|y|σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t
≤ C

∫ ∞

|x|/2
t
βγ−n
γ−1

dt

t
≤ C|x|

−n−βγ
γ−1 .

By combining the last two estimates, we arrive at

u(x) = c1(x)Wβ,γ(|y|
σ1vq)(x) ≤ C|x|

−n−βγ
γ−1 for large |x|.

This completes the proof.
�
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4.2. Fast decay rates for v(x).

Proposition 3. If p(n−βγ
γ−1 )− σ2 > n, then v(x) ≃ |x|−

n−βγ
γ−1 .

Proof. Consider the splitting

v(x) ≤ C
(

∫ |x|/2

0
+

∫ ∞

|x|/2

)(

∫

Bt(x)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t

.
= C(I1 + I2).

For large |x| there holds

I1 =

∫ |x|/2

0

(

∫

Bt(x)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t
≤ C|x|

p βγ−n

(γ−1)2
+

βγ+σ2
γ−1 ≤ C|x|−

n−βγ
γ−1 ,

since p(n−βγ
γ−1 )− σ2 > n and u(x) ≤ C|x|

−n−βγ
γ−1 .

It remains to estimate I2. Using similar calculations in the proof of Corol-
lary 3, we can show that |y|σ2up ∈ L1(Rn) in this case. Therefore,

I2 =

∫ ∞

|x|/2

(

∫

Bt(x)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t
≤ C|x|−

n−βγ
γ−1 .

Hence, these estimates for I1 and I2 together with Proposition 1 complete
the proof. �

Proposition 4. If p(n−βγ
γ−1 )− σ2 = n, then v(x) ≃ |x|−

n−βγ
γ−1 (ln |x|)

1
γ−1 .

Proof. Step 1: For any λ > 1 if t > λ|x|, then Bt−|x|(0) ⊂ Bt(x). Then from
Proposition 1, we can find a suitably small R > 0 such that

v(x) ≥ c

∫ ∞

λ|x|

(

∫

Bt−|x|(0)\BR(0) |y|
σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t

≥ c

∫ ∞

λ|x|

(

∫ t−|x|
R r

n+σ2−p(n−βγ
γ−1

) dr
r

tn−βγ

)
1

γ−1 dt

t

≥ c

∫ ∞

λ|x|

(

∫ (1−1/λ)t
1−1/λ

dr
r

tn−βγ

)
1

γ−1 dt

t
≥ c

∫ ∞

λ|x|

( ln t

tn−βγ

)
1

γ−1 dt

t
.

From this we deduce that

(4.2) lim
|x|−→∞

|x|
n−βγ
γ−1

(ln |x|)
1

γ−1

v(x) ≥ c > 0,

which follows after sending λ −→ 1 in the following identity (see (4.1) in
[35]):

(4.3) lim
|x|−→∞

|x|
n−βγ
γ−1

(ln λ|x|)
1

γ−1

∫ ∞

λ|x|

( ln t

tn−βγ

)
1

γ−1 dt

t
=

γ − 1

n− βγ
λ
−n−βγ

γ−1 (λ > 0).
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Step 2: We estimate the terms J1 and J2 where

v(x) ≤ C
(

∫ λ|x|

0
+

∫ ∞

λ|x|

)(

∫

Bt(x)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t

.
= C(J1 + J2)

with λ ∈ (1/2, 1) and |x| is large. Then for 0 ≤ t ≤ λ|x| and y ∈ Bt(x),

Proposition 2 implies that u(y) ≤ C|y|
−n−βγ

γ−1 ≤ C|x|
−n−βγ

γ−1 . Therefore,

J1 ≤ C|x|
−

p(n−βγ)

(γ−1)2
+

σ2
γ−1

∫ λ|x|

0
t

βγ
γ−1

dt

t
≤ C|x|

−
p(n−βγ)

(γ−1)2
+

σ2+βγ
γ−1 ≤ C|x|−

n−βγ
γ−1 ,

since pn−βγ
γ−1 − σ2 = n implies

−
p(n− βγ)

(γ − 1)2
+

σ2 + βγ

γ − 1
= −

n− βγ

γ − 1
.

Hence,

(4.4) lim
|x|−→∞

|x|
n−βγ
γ−1 (ln |x|)−

1
γ−1J1 = 0.

In view of Bt(x) ⊂ B|x|+t(0) and Jensen’s inequality, we can write

J2 ≤ C

∫ ∞

λ|x|

(

∫

B1(0)
|y|σ2u(y)p dy +

∫

B|x|+t(0)\B1(0)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t

≤ C

∫ ∞

λ|x|

(

∫

B1(0)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1
+

(

∫

B|x|+t(0)\B1(0)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t
.
= C(J3 + J4).

Since
∫

B1(0)
|y|σ2u(y)p dy ≤ C,

J3 ≤ C

∫ ∞

λ|x|

(

∫

B1(0)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t
≤ C

∫ ∞

λ|x|
t
βγ−n
γ−1

dt

t
≤ C|x|

−n−βγ
γ−1 .

Likewise, Proposition 2 implies that

J4 ≤ C

∫ ∞

λ|x|

(

∫

Bt+|x|(0)\B1(0)
|y|

σ2−p(n−βγ
γ−1

)
dy

tn−βγ

)
1

γ−1 dt

t

≤ C

∫ ∞

λ|x|

(

∫ t+|x|
1 rσ2−p(n−βγ

γ−1
)+n dr

r

tn−βγ

)
1

γ−1 dt

t
≤ C

∫ ∞

λ|x|

( ln t

tn−βγ

)
1

γ−1 dt

t
.

In view of (4.3), sending λ −→ 1 yields

(4.5) lim
|x|−→∞

|x|
n−βγ
γ−1

(ln |x|)
1

γ−1

J2 ≤ C.

Hence, (4.2),(4.4) and (4.5) imply v(x) ≃ |x|
−n−βγ

γ−1 (ln |x|)
1

γ−1 . �

Proposition 5. If p(n−βγ
γ−1 )− σ2 < n, then v(x) ≃ |x|

−
p(

n−βγ
γ−1 )−(βγ+σ2)

γ−1 .
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Proof. Fix a suitable R > 0 and let

Ω1
.
= [|x| −R, |x|+R] and Ω2

.
= [1−R/|x|, 1 +R/|x|]

and consider the splitting

v(x) ≤ C
(

∫

Ω1

+

∫

Ωc
1

)(

∫

Bt(x)
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t
.
= C(K1 +K2).

Step 1: We claim that

lim
|x|−→∞

|x|
p(

n−βγ
γ−1 )−(βγ+σ2)

γ−1 K1 = 0.

Since Bt(x) ⊂ B2t+R(0) whenever t ∈ Ω1, Proposition 2 implies that

K1 ≤ C

∫

Ω1

(

∫ 2t+R
0 rn+σ2−p(n−βγ

γ−1
) dr

r

tn−βγ

)
1

γ−1 dt

t

≤ C|x|−
p(

n−βγ
γ−1 )−(βγ+σ2)+1

γ−1 .

Hence,

lim
|x|−→∞

|x|
p(

n−βγ
γ−1 )−(βγ+σ2)

γ−1 K1 = 0,

and this proves the claim.

Step 2: We show

lim
|x|−→∞

|x|
p(

n−βγ
γ−1 )−(βγ+σ2)

γ−1 K2 = C.

As before, Proposition 2 implies that for large |x|,

K2 ≤ C

∫

Ωc
1

(

∫

Bt(x)
|y|

−p(n−βγ
γ−1

)+σ2 dy

tn−βγ

)
1

γ−1 dt

t

≤ C|x|
−

p(
n−βγ
γ−1 )−(βγ+σ2)

γ−1

∫

Ωc
2

(

∫

Bs(e)
|z|

−p(n−βγ
γ−1

)+σ2 dz

sn−βγ

)
1

γ−1 ds

s

≤ C|x|−
p(

n−βγ
γ−1 )−(βγ+σ2)

γ−1 .

Here, we have used the change of variables z = y
|x| and s = t

|x| and the

assumption that

(4.6)

∫ ∞

0

(

∫

Bs(e)
|z|−p(n−βγ

γ−1
)+σ2 dz

sn−βγ

)
1

γ−1 ds

s
< ∞,
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where e = x/|x| is a unit vector. Likewise, using the lower bound estimate
of u in Proposition 1, we can apply similar arguments to show

K2 ≥ C|x|−
p(

n−βγ
γ−1 )−(βγ+σ2)

γ−1 ,

and we deduce that

lim
|x|−→∞

|x|
p(

n−βγ
γ−1 )−(βγ+σ2)

γ−1 K2 = C.

Therefore, it only remains to prove assertion (4.6). We do so by considering
the splitting

(

∫ 1/2

0
+

∫ ∞

1/2

)(

∫

Bs(e)
|z|−p(n−βγ

γ−1
)+σ2 dz

sn−βγ

)
1

γ−1 ds

s
.
= K3 +K4.

Since |z| ∈ [1/2, 3/2] whenever z ∈ Bs(e), there holds

K3 ≤ C

∫ 1/2

0

( |Bs(e)|

sn−βγ

)
1

γ−1 ds

s
≤ C

∫ 1/2

0
s

βγ
γ−1

ds

s
< ∞.

On the other hand, we can certainly find a suitably large c > 0 so that

K4 ≤ C

∫ ∞

1/2

(

∫

Bcs(0)
|z|−p(n−βγ

γ−1
)+σ2 dz

sn−βγ

)
1

γ−1 ds

s

≤ C

∫ ∞

1/2

(

∫ cs
0 r

n−p(n−βγ
γ−1

)+σ2 dr
r

sn−βγ

)
1

γ−1 ds

s

≤ C

∫ ∞

1/2
s−

p(
n−βγ
γ−1 )−(βγ+σ2)

γ−1
ds

s
< ∞,

and this completes the proof. �

Proof of Theorem 1. If u, v are positive integrable solutions, then Theo-
rem 2 and Propositions 2–5 imply u, v are bounded and decay with the fast
rates as |x| −→ ∞. Conversely, assume u, v are bounded and decay with

the fast rates as |x| −→ ∞. If u(x) decays with the rate |x|−
n−βγ
γ−1 , then

∫

Rn

u(x)r0 dx ≤

∫

B1(0)
u(x)r0 dx+

∫

Rn\B1(0)
u(x)r0 dx

≤ C1 + C2

∫ ∞

1
t
n−(n−βγ

γ−1
)r0 dt

t
< ∞,

since the non-subcritical condition implies (n− βγ)r0 > n(γ − 1). Likewise,

if v(x) decays with the rate |x|
−n−βγ

γ−1 , we can show v ∈ Ls0(Rn). If v(x)

decays with the rate |x|
−n−βγ

γ−1 (ln |x|)
1

γ−1 , then we can find a suitably large
R > 0 and small ε > 0 such that

(ln |x|)
s0

γ−1 ≤ C|x|ε for |x| > R.
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This implies
∫

Rn

v(x)s0 dx ≤ C1 + C2

∫ ∞

R
t
n−(n−βγ

γ−1
)s0+ε dt

t
< ∞,

since n − (n−βγ
γ−1 )s0 + ε < 0 provided ε is sufficiently small. Now suppose

v(x) decays with the rate

|x|−
(p

n−βγ
γ−1 )−(βγ+σ2)

γ−1 .

Since q0 <
n−βγ
γ−1 , we obtain p(n−βγ

γ−1 )−(βγ+σ2) > pq0−(βγ+σ2) = p0(γ−1).

From this we deduce that

n−
(

p(
n− βγ

γ − 1
)− (βγ + σ2)

) s0
γ − 1

< 0

and thus
∫

Rn

v(x)s0 dx ≤ C1 + C2

∫ ∞

1
tn−(p(n−βγ

γ−1
)−(βγ+σ2))

s0
γ−1

dt

t
< ∞.

Hence, in any case, we conclude that u, v are integrable solutions. This
completes the proof of the theorem. �

5. Proof of Corollary 2

Let (u, v) be a positive solution of system (2.2). If u, v are either the
integrable solutions or are bounded and decay with the fast rates as |x| −→
∞, then clearly

(5.1) inf
Rn

u = inf
Rn

v = 0.

Thus, the potential estimate of Corollary 4.13 from [12] ensures positive
constants C1 and C2 such that

C1W1,γ(c1(y)|y|
σ1vq)(x) ≤ u(x) ≤ C2W1,γ(c1(y)|y|

σ1vq)(x),

C1W1,γ(c2(y)|y|
σ2up)(x) ≤ v(x) ≤ C2W1,γ(c2(y)|y|

σ2up)(x).

Since c1(x) and c2(x) are double bounded, we can then take k1(x) and k2(x)
to be the double bounded functions

k1(x) =
u(x)

W1,γ(|y|σ1vq)(x)
and k2(x) =

v(x)

W1,γ(|y|σ2up)(x)

so that u, v satisfies the integral system

(5.2)

{

u(x) = k1(x)W1,γ(|y|
σ2vq)(x),

v(x) = k2(x)W1,γ(|y|
σ2up)(x).

Therefore, the desired result follows immediately from Theorem 1. �
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6. Proof of Theorem 3

On the contrary, assume (3.11) does not hold. Then there exists an in-
creasing sequence rj −→ ∞ as j −→ ∞ such that if xrj denotes the maxi-
mum point of g in Brj (0)\B rj

2

(0), then

lim
j−→∞

g(xrj ) = ∞.

Thus,

(6.1) v(xrj ) =
g(xrj )

|xrj |
n+σ1

q ϕrj (xrj )
≥

c

|xrj |
n+σ1

q

.

As was done in [15], there holds ϕrj (xrj ) > δ for some small δ ∈ (0, 1)
independent of rj . Therefore, we can find a small s > 0 such that

ϕrj (y) > δ/2 for y ∈ Bs|xrj |
(xrj ).

Since g(y) ≤ g(xrj ), we have

v(y) ≤ C
v(xrj )

ϕrj (y)
≤ Cδv(xrj ).

By denoting the maximum point of u in Bs1|xrj
|(xrj) by xrj for s1 ∈ (0, s),

which ensures xrj lies in the interior of Bs|xrj |
(xrj), we get

u(y) ≤ u(xrj) for all y ∈ Bs2|xrj
|(xrj) ⊂ Bs|xrj

|(xrj )

with s2 ∈ (0, s − s1).

Step 1: We claim that for small ε ∈ (0, 1), there is ε1 ≥ 0 such that for |xrj |
large,

(6.2) u(xrj ) ≤ εv(xrj )
1+ε1 + C|xrj |

−n−βγ
γ−1 .

To prove this assertion, consider the splitting of the first equation in (1.1),

u(xrj ) ≤ C
(

∫ s2|xrj |

0
+

∫ ∞

s2|xrj |

)(

∫

Bt(xrj
) |y|

σ1v(y)q dy

tn−βγ

)
1

γ−1 dt

t
.
= C(L1 + L2).

The second term can be directly bounded since |y|σ1vq ∈ L1(Rn) implies

L2 ≤ C

∫ ∞

s2|xrj
|
t
βγ−n
γ−1

dt

t
≤ C|xrj |

−n−βγ
γ−1 .

To estimate L1, let ρ ∈ (0, s2|xrj |) and consider

L1 ≤ Cv(xrj )
1+ε1

(

∫ ρ

0
+

∫ s2|xrj |

ρ

)(

∫

Bt(xrj )
|y|σ1v(y)q−(1+ε1)(γ−1) dy

tn−βγ

)
1

γ−1 dt

t
.
= Cv(xrj )

1+ε1(L11 + L12).
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Then for |xrj | sufficiently large, the ground state properties of v imply

L11 ≤ ε
q−(ε1+1)(γ−1)

γ−1

∫ ρ

0
t
βγ+σ1
γ−1

dt

t
≤ ε/2C.

If |xrj | and ρ are large, Hölder’s inequality and Corollary 3 imply
∫

Bt(xrj )
|y|σ1v(y)q−(1+ε1)(γ−1) dy

=

∫

Bt(xrj )
|y|σ1

q−(1+ε1)(γ−1)
q v(y)q−(1+ε1)(γ−1)|y|

σ1(1+ε1)(γ−1)
q dy

≤
(

∫

Bt(xrj )
|y|σ1v(y)q dy

)1−(1+ε1)(γ−1)/q(
∫

Bt(xrj )
|y|σ1 dy

)

(1+ε1)(γ−1)
q

≤ ‖|y|σ1vq‖
1−(1+ε1)(γ−1)/q
1 t

(n+σ1)(1+ε1)(γ−1)
q ≤ Ct

(n+σ1)(1+ε1)(γ−1)
q .

Therefore,

L12 ≤ C

∫ s2|xrj |

ρ

(

∫

Bt(xrj )
|y|σ1v(y)q−(1+ε1)(γ−1) dy

tn−βγ

)
1

γ−1 dt

t

≤ C

∫ s2|xrj |

ρ
t−

n−βγ
γ−1

+
(n+σ1)(1+ε1)

q
dt

t
≤ ε/2C

since −n−βγ
γ−1 + (n+σ1)(1+ε1)

q < 0 provided we choose ε1 in [0, n−βγ
γ−1

q
n+σ1

− 1).

Hence, we arrive at L1 ≤ εv(xrj )
1+ε1 and combining this with the estimate

for L2 yields (6.2).

Step 2: For large |xrj |, there exists ε2 ≥ 0 such that

(6.3) v(xrj ) ≤ u(xrj )
1

1+ε1 + C|xrj |
−

n−βγ−ε2
γ−1

Consider the splitting of the second integral equation

v(xrj ) ≤ C
(

∫ s1|xrj |

0
+

∫ ∞

s1|xrj |

)(

∫

Bt(xrj )
|y|σ2u(y)p dy

tn−βγ

)
1

γ−1 dt

t
.
= C(L3 + L4).

Actually, if p(n−βγ
γ−1 )−σ2 > n, then we can choose ε1 = 0 in (6.2). Likewise,

since q ≥ p, there holds q(n−βγ
γ−1 )−σ1 > n and we can mimic the proof in Step

1 on the second integral equation to get estimate (6.3) with ε1 = ε2 = 0.
Therefore, we arrive at the estimates

{

u(xrj) ≤ εv(xrj ) + C|xrj |
−n−βγ

γ−1 ,

v(xrj ) ≤ εu(xrj) + C|xrj |
−n−βγ

γ−1 ,

and it follows that

v(xrj ) ≤ C|xrj |
−n−βγ

γ−1 .
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This is a contradiction with (6.1) and this completes the proof of the theorem
for this case. Hence, in view of this, we restrict our attention to the case
where p(n−βγ

γ−1 )− σ2 ≤ n.

(i) First, let p(n−βγ
γ−1 ) − σ2 = n and we estimate L3 and L4 from above. By

definition of xrj , we have

L3 ≤ u(xrj )
1

1+ε1

(

∫ ρ

0
+

∫ s1|xrj |

ρ

)(

∫

Bt(xrj
) |y|

σ2u(y)
p− γ−1

1+ε1 dy

tn−βγ

)
1

γ−1 dt

t

.
= u(xrj )

1
1+ε1 (L31 + L32).

By virtue of the boundedness and decaying property of u, we obtain for |xrj |
large that

L31 ≤ ε
p(1+ε1)−(γ−1)
(1+ε1)(γ−1)

∫ ρ

0
t

βγ
γ−1

dt

t
≤ ε/2C.

For any given ε1 > 0 and because p(n−βγ
γ−1 )− σ2 = n, we can show

(6.4)
n(γ − 1)

n− βγ
<

n(p− γ−1
1+ε1

)

βγ + σ2
.

Hence, we may choose ℓ in the interval
(

n(γ−1)
n−βγ ,

n(p− γ−1
1+ε1

)

βγ+σ1

)

so that Hölder’s

inequality and Theorem 2 yield

∫

Bt(xrj )
|y|σ2u(y)

p− γ−1
1+ε1 dy ≤ Ctσ1‖u‖

p− γ−1
1+ε1

ℓ |Bt(xrj )|
1−

p(1+ε1)−(γ−1)
(1+ε1)ℓ

≤ Ctn+σ1−a,

where a
.
= n

ℓ
p(1+ε1)−(γ−1)

1+ε1
and ρ ≤ t ≤ s1|xrj |. Therefore, βγ + σ1 − a < 0

and we get

L32 ≤ C

∫ s1|xrj
|

ρ
t
βγ+σ1−a

γ−1
dt

t
≤ ε/2C.

Now, it is simple to show that

(6.5) −
σ2(γ − 1)

n− βγ
<

np

βγ + σ2
− p.

Thus, we can choose ε′2 in (−σ2(γ−1)
n−βγ , np

βγ+σ2
−p) so that n+σ2(1+p/ε′2) > 0.

If t ≥ s1|xrj | and y ∈ Bt(xrj), then |y| ≤ t + |xrj | ≤ (1 + 1/s1)t and thus
Bt(xrj ) ⊂ B(1+1/s1)t(0) ≡ Bct(0). Thus, Hölder’s inequality and Theorem 2



A CHARACTERIZATION OF FAST DECAYING SOLUTIONS 23

imply

∫

Bt(xrj )
|y|σ2u(y)p dy ≤

∫

Bct(0)
|y|σ2u(y)p dy

≤ ‖u‖p
p+ε′2

(

∫

Bct(0)
|y|σ2(1+p/ε′2) dy

)

ε′2
p+ε′

2

≤ C
(

∫ ct

0
rn+σ2(1+p/ε′2)

dr

r

)

ε′2
p+ε′

2

≤ Ct
nε′2
p+ε′

2
+σ2

= Ct
n+σ2−

np

p+ε′
2 .

Hence,

L4 ≤ C

∫ ∞

s1|xrj |
t
βγ+σ2−np/(p+ε′2)

γ−1
dt

t
≤ C|xrj |

−
n−βγ−ε2

γ−1 ,

where ε2 =
nε′2
p+ε′2

+ σ2. Combining these estimates for L3 and L4 give us

(6.3).

(ii) Let p(n−βγ
γ−1 )−σ2 < n. We estimate L3 and L4 in this case. The estimate

for L3 follows just as in the previous case provided we choose ε1 to be in the
interval

( (n+ σ2)(γ − 1)− p(n− βγ)

p(n− βγ)− (βγ + σ2)(γ − 1)
,

q(n− βγ)

(n+ σ1)(γ − 1)
− 1

)

.

This is possible since the non-subcritical condition yields q0 < n−βγ
γ−1 which,

after some direct calculations, implies that

(n+ σ2)(γ − 1)− p(n− βγ)

p(n− βγ)− (βγ + σ2)(γ − 1)
<

q(n− βγ)

(n+ σ1)(γ − 1)
− 1.

Meanwhile, this choice for ε1 implies (6.4) and the same arguments apply
thereafter. Let us now estimate L4 for this case. By the non-subcritical

condition and p(n−βγ
γ−1 )− σ2 < n, we can show

p ∈
((γ − 1)(βγ + σ2)

n− βγ
,
(n + σ2)(γ − 1)

n− βγ

)

and thus n(γ−1)
n−βγ < np

βγ+σ2
. Since n > βγ we have that np

βγ+σ2
> np

n+σ2
.

Therefore, we can choose ε′2 > 0 in the interval

(6.6)
( np

n+ σ2
−

n(γ − 1)

n− βγ
,

np

βγ + σ2
−

n(γ − 1)

n− βγ

)
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so that for t ≥ s1|xrj |, Hölder’s inequality and Theorem 2 imply
∫

Bt(xrj )
|y|σ2u(y)p dy ≤

∫

Bct(0)
|y|σ2u(y)p dy

≤ ‖u‖pn(γ−1)
n−βγ

+ε′2

(

∫

Bct(0)
|y|

σ2
n(γ−1)+ε′2(n−βγ)

n(γ−1)+ε′
2
(n−βγ)−p(n−βγ) dy

)1−
p(n−βγ)

n(γ−1)+ε′
2
(n−βγ)

≤ C
(

∫ ct

0
r
n+σ2

n(γ−1)+ε′2(n−βγ)

n(γ−1)+ε′
2
(n−βγ)−p(n−βγ)

dr

r

)1−
p(n−βγ)

n(γ−1)+ε′
2
(n−βγ)

≤ Ct
n+σ2−

np(n−βγ)

n(γ−1)+ε′
2
(n−βγ) .

Hence,

L4 ≤ C

∫ ∞

s1|xrj |
t

βγ+σ2−
np(n−βγ)

n(γ−1)+ε′
2
(n−βγ)

γ−1
dt

t
≤ C|xrj |

−
n−βγ−ε2

γ−1 ,

where

ε2 = n+ σ2 −
np(n− βγ)

n(γ − 1) + ε′2(n− βγ)

and ε2 > 0 due to (6.6). Thus, combining the estimates for L3 and L4 leads
to (6.3).

Step 3: (iii) Let p(n−βγ
γ−1 )− σ2 = n. Choose ε1 ∈ (0, q(n−βγ)

(n+σ1)(γ−1) − 1) so that

estimate (6.2) holds. Applying estimate (6.3) to estimate (6.2) yields

u(xrj ) ≤ ε
(

u(xrj )
1

1+ε1 + C|xrj |
−

n−βγ−ε2
γ−1

)1+ε1
+ C|xrj |

−n−βγ
γ−1

≤ Cεu(xrj ) + C|xrj |
−

(1+ε1)(n−βγ−ε2)
γ−1 + C|xrj |

−n−βγ
γ−1

≤ Cεu(xrj ) + C|xrj |
−n−βγ

γ−1(6.7)

since
(1 + ε1)(n− βγ − ε2)

γ − 1
>

n− βγ

γ − 1

provided we choose ε′2 in (−σ2(γ−1)
n−βγ , min{ (n+σ2)ε1(γ−1)−σ2(1+ε1)p

n+βγε1+(1+ε1)σ2
, np
βγ+σ2

−p}).

Note that this is possible due to (6.5) and the fact that

−
σ2(γ − 1)

n− βγ
<

(n+ σ2)(γ − 1)ε1 − σ2(1 + ε1)p

n+ βγε1 + (1 + ε1)σ2
.

After absorbing the first term on the right-hand side of (6.7) by the left-hand
side, we get the estimate

u(xrj ) ≤ C|xrj |
−n−βγ

γ−1 .

Applying this estimate to estimate (6.3) yields

v(xrj ) ≤ C|xrj |
− n−βγ

(γ−1)(1+ε1) ,
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but this contradicts with (6.1) in view of ε1 <
q(n−βγ)

(n+σ1)(γ−1) − 1.

(iv) If p(n−βγ
γ−1 )− σ2 < n, we can adopt the same arguments as in part (iii)

to arrive at a contradiction provided we choose ε1 to be in the interval
( (n+ σ2)(γ − 1)− p(n− βγ)

p(n− βγ)− (βγ + σ2)(γ − 1)
,

q(n− βγ)

(n+ σ1)(γ − 1)
− 1

)

and we choose a positive and suitably small ε′2 < (n+σ2)ε1(γ−1)−σ2(1+ε1)p
n+βγε1+(1+ε1)σ2

which also belongs to the interval (6.6). This completes the proof of the
theorem. �
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